Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
Stem Cell Res Ther ; 15(1): 38, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336763

RESUMO

BACKGROUND: Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) plays a pivotal role in inducing metabolic inflammation in diabetes. Additionally, the NOD1 ligand disrupts the equilibrium of bone marrow-derived hematopoietic stem/progenitor cells, a process that has immense significance in the development of diabetic retinopathy (DR). We hypothesized that NOD1 depletion impedes the advancement of DR by resolving bone marrow dysfunction. METHODS: We generated NOD1-/--Akita double-mutant mice and chimeric mice with hematopoietic-specific NOD1 depletion to study the role of NOD1 in the bone marrow-retina axis. RESULTS: Elevated circulating NOD1 activators were observed in Akita mice after 6 months of diabetes. NOD1 depletion partially restored diabetes-induced structural changes and retinal electrical responses in NOD1-/--Akita mice. Loss of NOD1 significantly ameliorated the progression of diabetic retinal vascular degeneration, as determined by acellular capillary quantification. The preventive effect of NOD1 depletion on DR is linked to bone marrow phenotype alterations, including a restored HSC pool and a shift in hematopoiesis toward myelopoiesis. We also generated chimeric mice with hematopoietic-specific NOD1 ablation, and the results further indicated that NOD1 had a protective effect against DR. Mechanistically, loss of hematopoietic NOD1 resulted in reduced bone marrow-derived macrophage infiltration and decreased CXCL1 and CXCL2 secretion within the retina, subsequently leading to diminished neutrophil chemoattraction and NETosis. CONCLUSIONS: The results of our study unveil, for the first time, the critical role of NOD1 as a trigger for a hematopoietic imbalance toward myelopoiesis and local retinal inflammation, culminating in DR progression. Targeting NOD1 in bone marrow may be a potential strategy for the prevention and treatment of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Proteína Adaptadora de Sinalização NOD1 , Degeneração Retiniana , Animais , Camundongos , Medula Óssea/metabolismo , Diabetes Mellitus/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/terapia , Células-Tronco Hematopoéticas/metabolismo , Inflamação/genética , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Retina/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo
2.
Fish Shellfish Immunol ; 146: 109407, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281612

RESUMO

As an ancient species with both conservation and commercial value, Sturgeon's inflammatory regulation mechanism is a research point. Nucleotide-binding and oligomerization domain-containing proteins 1 and 2 (NOD1/2) are classical intracellular pattern recognition receptors (PRRs) in immunity of anti-bacterial infection. However, the characterization and function of NOD1/2 in Sturgeon are still unclear. In this study, we analyzed the synteny relationship of NOD1/2 genes between Acipenser ruthenus and representative fishes at the genome-level. Results showed that the ArNOD2 collinear genes pair was present in all representative fishes. The duplicated ArNOD1/2 genes were under purifying selection during evolution as indicated by their Ka/Ks values. To explore the function of NOD1/2, we further investigated their expression patterns and the effects of pathogenic infection, PAMPs treatment, and siRNA interference in Acipenser baerii, the sibling species of A. ruthenus. Results showed that both AbNOD1/2 were expressed at early developmental stages and in different tissues. Pathogenic infection in vivo and PAMPs treatment in vitro demonstrated that AbNOD1/2 could respond to pathogen stimulation. siRNA interference with AbNOD1/2 inhibited expression levels of RIPK2 and inflammatory cytokines compared to the control group after iE-DAP or MDP treatment. This study hinted that the AbNOD1/2 could stimulate the inflammatory cytokines response during evolutionary processes.


Assuntos
Infecções Bacterianas , Moléculas com Motivos Associados a Patógenos , Animais , Peixes/genética , Citocinas , RNA Interferente Pequeno , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética
3.
FEBS J ; 290(22): 5292-5294, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37735823

RESUMO

NOD1 is a cytosolic immune receptor well known for recognizing intracellular bacteria and inducing innate immune responses. Upon ligand binding, it usually forms a complex with the serine/threonine kinase RIPK2 to activate the transcription factor NF-κB. Next to its role in pathogen recognition, NOD1 has been associated with cancer progression. In this regard, Hezinger et al. investigated a non-canonical role of NOD1 in cell migration. They discovered that NOD1 is crucial for the migration and chemotaxis of HeLa cells and identified HAX-1 as a novel interaction partner.


Assuntos
NF-kappa B , Transdução de Sinais , Humanos , Células HeLa , NF-kappa B/genética , NF-kappa B/metabolismo , Imunidade Inata , Movimento Celular , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo
4.
FEBS J ; 290(22): 5295-5312, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37488967

RESUMO

The human Nod-like receptor protein NOD1 is a well-described pattern-recognition receptor (PRR) with diverse functions. NOD1 associates with F-actin and its protein levels are upregulated in metastatic cancer cells. A hallmark of cancer cells is their ability to migrate, which involves actin remodelling. Using chemotaxis and wound healing assays, we show that NOD1 expression correlated with the migration rate and chemotactic index in the cervical carcinoma cell line HeLa. The effect of NOD1 in cell migration was independent of the downstream kinase RIPK2 and NF-ĸB activity. Additionally, NOD1 negatively regulated the phosphorylation status of cofilin, which inhibits actin turnover. Co-immunoprecipitation assays identified HCLS1-associated protein X-1 (HAX-1) as a previously unknown interaction partner of NOD1. Silencing of HAX-1 expression reduced the migration behaviour to similar levels as NOD1 knockdown, and simultaneous knockdown of NOD1 and HAX-1 showed no additive effect, suggesting that both proteins act in the same pathway. In conclusion, our data revealed an important role of the PRR NOD1 in regulating cell migration as well as chemotaxis in human cervical cancer cells and identified HAX-1 as a protein that interacts with NOD1 and is involved in this signalling pathway.


Assuntos
Actinas , NF-kappa B , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Actinas/metabolismo , Transdução de Sinais , Movimento Celular , Células HeLa , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo
5.
Helicobacter ; 28(5): e13002, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37350445

RESUMO

BACKGROUND: Functional dyspepsia (FD) is a multifactorial disorder. Helicobacter pylori (H. pylori)-related dyspepsia (HpD) may be considered a separate entity. Duodenal eosinophilia is a potential pathogenic mechanism in FD. However, the impact of duodenal eosinophilia and host genetic polymorphism of innate and pro-inflammatory cascade, nucleotide-binding oligomerization domain 1 (NOD-1), and interleukin-1 beta (IL-1ß) in HpD was not explored. AIM: To evaluate the association of NOD1-796G>A and IL-1B-511C>T gene variants and low-grade duodenal eosinophilia in HpD. METHODS: A multicenter cross-sectional study was conducted. A total of 253 patients who met Rome-IV criteria were selected before upper endoscopy and 98 patients were included after unremarkable upper endoscopy and positive H. pylori in gastric biopsies were assessed. Clinical parameters, H. pylori cagA and duodenal histology, were evaluated. RESULTS: Sixty-four (65%) patients had epigastric pain syndrome (EPS), 24 (25%) postprandial distress syndrome (PDS), and 10 (10%) EPS/PDS overlap. FD subtypes were not associated with NOD1-796G>A and IL-1B-511C>T gene variants. Low-grade duodenal eosinophilia was significantly increased in NOD1-796 GG versus single A-allele, but not in IL-1B-511 single T-allele or CC-allele. This association is dependent of cagA infection, since harboring cagA strain was significantly associated with low-grade duodenal eosinophilia with isolated variants NOD1-796 GG and IL-1B-511 single T-allele, but not without cagA. When we performed combined polymorphism analysis with NOD1-796 GG/IL-1B-511 single T-allele, a synergistic effect on low-grade duodenal eosinophilia was found between these two loci irrespective of cagA strain status in HpD. CONCLUSION: Our findings suggest that low-grade duodenal eosinophilia is significantly associated with NOD1-796 GG allele specially in cagA strain and with allelic combination NOD1-796 GG/IL-1B-511 single T-allele independent of cagA strain infection in HpD patients.


Assuntos
Dispepsia , Eosinofilia , Gastrite , Infecções por Helicobacter , Helicobacter pylori , Humanos , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Estudos Transversais , Dispepsia/genética , Dispepsia/complicações , Eosinofilia/complicações , Gastrite/complicações , Infecções por Helicobacter/patologia , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Polimorfismo Genético
6.
Life Sci ; 316: 121400, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657640

RESUMO

AIMS: Activation of specific innate immune receptors has been characterized to modulate nutrient metabolism in individual metabolic tissue directly or indirectly via secretory molecules. Activation of the nucleotide-binding oligomerization domain-containing protein 1 (NOD1) in adipocytes has been reported to induce lipolysis linked with insulin resistance and inflammatory response. These cues are positioned to modulate metabolic action in distal organs through paracrine/endocrine signaling. Here, we assessed the role of NOD1-mediated lipolysis and inflammatory response in adipocytes to affect lipid metabolism in hepatocytes. MAIN METHODS: Human hepatoma cells (HepG2) were exposed to conditioned medium obtained from 3 T3-L1 adipocytes pretreated with NOD1 ligand (iE-DAP) and the effects on lipid accumulation, inflammation and insulin response were assessed. Activation of mechanisms leading to hepatic lipid accumulation was investigated by gene expression analysis. KEY FINDINGS: The conditioned medium from NOD1-activated 3 T3-L1 adipocytes (CM-DAP) induced lipid accumulation in HepG2 cells, driven by both lipolysis and inflammatory responses. The CM-DAP-induced lipid accumulation was independent to de novo lipogenesis and resulted from the enhanced transport of fatty acids inside and consequent increase in rate of triglycerides synthesis in hepatocytes. Moreover, CM-DAP-induced lipid accumulation instigated the expression of the markers of fatty acid oxidation and VLDL assembly for the export of triglycerides from hepatocyte. Furthermore, CM-DAP-induced lipid accumulation was associated with induction of inflammatory response and impairment of insulin signaling in HepG2 cells. SIGNIFICANCE: Beyond showing liver-specific mechanisms to adipocytes-derived factors, our findings support the involvement of adipose tissue as a mediator in NOD1-mediated biological responses to modulate hepatic metabolism.


Assuntos
Adipócitos , Insulina , Animais , Camundongos , Humanos , Células Hep G2 , Células 3T3-L1 , Meios de Cultivo Condicionados/metabolismo , Adipócitos/metabolismo , Insulina/metabolismo , Triglicerídeos/metabolismo , Lipídeos , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo
7.
J Child Neurol ; 38(1-2): 38-43, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36544356

RESUMO

Background: Subacute sclerosing panencephalitis is a progressive neurodegenerative disease that is a late complication of measles infection. However, to date, the pathogenesis of subacute sclerosing panencephalitis is still not explained; both viral and host factors seem to be associated. The present study aimed to investigate the relationship between NOD1 and NOD2 gene variants and subacute sclerosing panencephalitis. Methods: The gene variants of NOD1 (rs2075820 and rs2075818) and NOD2 (R334Q and R334W) were explored in 64 subacute sclerosing panencephalitis patients and 70 controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results: The frequencies of the AA genotype and A allele of rs2075820 (NOD1; c.796G>A) polymorphism were lower in patients compared with controls (P = .022 and .014, respectively). The presence of the A allele of rs2075820 may be considered as a protective factor for subacute sclerosing panencephalitis. There was a significant difference between the groups in rs2075818 (NOD1 G/C) polymorphism, and the CC genotype increased the risk of subacute sclerosing panencephalitis by 3.471-fold. The carriers of the C allele of rs2075818 (G/C) had a 1.855-fold susceptibility to subacute sclerosing panencephalitis (P = .018). The GC genotype might be associated with subacute sclerosing panencephalitis susceptibility in the patients compared with patients without having that haplotype (P = .03). Conclusions: Thus, we identified an association between subacute sclerosing panencephalitis and the rs2075820 (NOD1 G/A) and rs2075818 (NOD1 G/C) polymorphisms. These findings implicate a possible effect of this genetic polymorphism in susceptibility to subacute sclerosing panencephalitis, which needs to be confirmed in bigger populations.


Assuntos
Doenças Neurodegenerativas , Panencefalite Esclerosante Subaguda , Humanos , Panencefalite Esclerosante Subaguda/genética , Polimorfismo Genético , Genótipo , Reação em Cadeia da Polimerase , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética
8.
Front Cell Infect Microbiol ; 12: 838340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811665

RESUMO

Impaired intestinal barrier function and gut microbiota dysbiosis are believed to be related to exacerbation of acute pancreatitis (AP). As a bacterial cell wall peptidoglycan component, diaminopimelic acid (DAP) is a specific ligand of NOD1 that regulates the NOD1/RIP2/NF-kB signaling pathway. Here, we investigated the role of DAP in the crosstalk between the gut microbiota and pancreas during the occurrence of AP. Upregulation of NOD1/RIP2/NF-kB and elevated serum DAP levels were found in severe AP (SAP) model rats. The accumulation of DAP in SAP patients corroborated its ability to serve as an indicator of disease severity. Subsequently, SAP rats were treated with oral administration of the traditional Chinese medicine Qingyi Keli (QYKL) as well as neomycin, which can widely eliminate DAP-containing bacteria. Both QYKL and neomycin intervention ameliorated intestinal and pancreatic damage and systemic inflammation in SAP rats. Through 16S rDNA sequencing, we found that QYKL could rehabilitate the gut microbiota structure and selectively inhibit the overgrowth of enteric bacteria, such as Helicobacter and Lactobacillus, in SAP rats without affecting some protective strains, including Romboutsia and Allobaculum. Interestingly, we demonstrated that the decrease in serum DAP was accompanied by suppression of the NOD1/RIP2/NF-kB signaling pathway in both the intestine and pancreas of the two intervention groups. Taken together, these results suggested that the gut microbiota-DAP-NOD1/RIP2 signaling pathway might play a critical role in the progression of AP and that SAP could be alleviated via intervention in the signaling pathway. Our work provides new potential early warning indicators of SAP and targets for intervention.


Assuntos
Microbioma Gastrointestinal , Pancreatite , Doença Aguda , Animais , Ácido Diaminopimélico/química , Ácido Diaminopimélico/metabolismo , Ácido Diaminopimélico/farmacologia , Microbioma Gastrointestinal/fisiologia , NF-kappa B/metabolismo , Neomicina , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Ratos , Transdução de Sinais
9.
Curr Protein Pept Sci ; 23(2): 121-128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35319362

RESUMO

BACKGROUND: Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is known to play an important role in innate immunity, while the relationship between NOD1 and inflammatory response in endometriosis remains unknown. The present study aims to investigate the effects of NOD1 on inflammatory response in endometriosis. METHODS: Immunohistochemistry staining, Western blot, and qRT-PCR were conducted to investigate the levels of NOD1 and inflammatory cytokines in the endometriotic lesions. A Spearman's rank correlation analysis was conducted to determine the correlations of NOD1 and inflammatory cytokines (interleukin (IL)-6, tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1). Human endometrial stromal cells (HESCs) were isolated and incubated with peritoneal fluid with or without ML130. Cell viability was determined by using an MTT assay. RESULTS: A significant elevation in NOD1 and inflammatory cytokine was observed in ectopic endometrium. Interestingly, a positive correlation between NOD1 and inflammatory cytokines was observed. In addition, treatment with ML130 significantly suppressed cell viability and the production of inflammatory cytokines in the 20% peritoneal fluid treated ectopic HESCs. CONCLUSIONS: NOD1 is related to the inflammatory response that is involved in endometriosis.


Assuntos
Endometriose , Proteína Adaptadora de Sinalização NOD1 , Citocinas/metabolismo , Endometriose/metabolismo , Endométrio/metabolismo , Endométrio/patologia , Feminino , Humanos , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
10.
BMC Med ; 20(1): 55, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35130902

RESUMO

BACKGROUND: Metastatic cervical squamous cell carcinoma (CSCC) has poor prognosis and is recalcitrant to the current treatment strategies, which warrants the necessity to identify novel prognostic markers and therapeutic targets. Given that CSCC is a virus-induced malignancy, we hypothesized that the pattern recognition receptors (PRRs) involved in the innate immune response likely play a critical role in tumor development. METHODS: A bioinformatics analysis, qPCR, IHC, immunofluorescence, and WB were performed to determine the expression of NOD1/NOD2. The biological characteristics of overexpression NOD1 or NOD2 CSCC cells were compared to parental cells: proliferation, migration/invasion and cytokines secretion were examined in vitro through CCK8/colony formation/cell cycle profiling/cell counting, wound healing/transwell, and ELISA assays, respectively. The proliferative and metastatic capacity of overexpression NOD1 or NOD2 CSCC cells were also evaluated in vivo. FCM, mRNA and protein arrays, ELISA, and WB were used to identify the mechanisms involved, while novel pharmacological treatment were evaluated in vitro and in vivo. Quantitative variables between two groups were compared by Student's t test (normal distribution) or Mann-Whitney U test (non-normal distribution), and one-way or two-way ANOVA was used for comparing multiple groups. Pearson χ2 test or Fisher's exact test was used to compare qualitative variables. Survival curves were plotted by the Kaplan-Meier method and compared by the log-rank test. P values of < 0.05 were considered statistically significant. RESULTS: NOD1 was highly expressed in CSCC with lymph-vascular space invasion (LVSI, P < 0.01) and lymph node metastasis (LM, P < 0.01) and related to worse overall survival (OS, P = 0.016). In vitro and in vivo functional assays revealed that the upregulation of NOD1 or NOD2 in CSCC cells promoted proliferation, invasion, and migration. Mechanistically, NOD1 and NOD2 exerted their oncogenic effects by activating NF-κb and ERK signaling pathways and enhancing IL-8 secretion. Inhibition of the IL-8 receptor partially abrogated the effects of NOD1/2 on CSCC cells. CONCLUSIONS: NOD1/2-NF-κb/ERK and IL-8 axis may be involved in the progression of CSCC; the NOD1 significantly enhanced the progression of proliferation and metastasis, which leads to a poor prognosis. Anti-IL-8 was identified as a potential therapeutic target for patients with NOD1high tumor.


Assuntos
Carcinoma de Células Escamosas , Proteína Adaptadora de Sinalização NOD1 , Proteína Adaptadora de Sinalização NOD2 , Neoplasias do Colo do Útero , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Feminino , Humanos , Imunidade Inata , Metástase Linfática , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Regulação para Cima , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
11.
Infect Immun ; 90(3): e0048521, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35225652

RESUMO

The human-restricted pathogen Neisseria meningitidis, which is best known for causing invasive meningococcal disease, has a nonpathogenic lifestyle as an asymptomatic colonizer of the human naso- and oropharyngeal space. N. meningitidis releases small peptidoglycan (PG) fragments during growth. It was demonstrated previously that N. meningitidis releases low levels of tripeptide PG monomer, which is an inflammatory molecule recognized by the human intracellular innate immune receptor NOD1. In the present study, we demonstrated that N. meningitidis released more PG-derived peptides than PG monomers. Using a reporter cell line overexpressing human NOD1, we showed that N. meningitidis activates NOD1 using PG-derived peptides. The generation of such peptides required the presence of the periplasmic N-acetylmuramyl-l-alanine amidase AmiC and the outer membrane lipoprotein NlpD. AmiC and NlpD were found to function in cell separation, and mutation of either amiC or nlpD resulted in large clumps of unseparated N. meningitidis cells instead of the characteristic diplococci. Using stochastic optical reconstruction microscopy, we demonstrated that FLAG epitope-tagged NlpD localized to the septum, while similarly tagged AmiC was found at the septum in some diplococci but was distributed around the cell in most cases. In a human whole-blood infection assay, an nlpD mutant was severely attenuated and showed particular sensitivity to complement. Thus, in N. meningitidis, the cell separation proteins AmiC and NlpD are necessary for NOD1 stimulation and survival during infection of human blood.


Assuntos
Proteínas de Bactérias , Lipoproteínas , Neisseria meningitidis , Proteína Adaptadora de Sinalização NOD1 , Peptidoglicano , Proteínas de Bactérias/metabolismo , Separação Celular , Parede Celular/metabolismo , Humanos , Lipoproteínas/metabolismo , Infecções Meningocócicas/metabolismo , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/metabolismo , Proteína Adaptadora de Sinalização NOD1/agonistas , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Peptidoglicano/metabolismo
12.
Methods Mol Biol ; 2421: 37-56, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34870810

RESUMO

NOD-like receptors (NLRs) are a family of pattern recognition receptors, able to respond to conserved microbial structures and endogenous danger signals. The NLR NOD1 responds to bacterial peptidoglycan, leading to recruitment of RIPK2, following activation of NFκB and MAPK pathways. In this chapter, we describe a fluorescent light microscopic approach to analyze the subcellular distribution of NOD1 upon infection with the invasive, Gram-negative bacterial pathogen Shigella flexneri. This method is based on exogenously expressed EGFP-tagged NOD1 and describes a protocol to obtain inducible cell lines with functional NOD1 signaling. The described protocol is useful to study NOD1 function, also in living cells, using live cell imaging and can be adopted for the study of other NLR proteins.


Assuntos
Transdução de Sinais , NF-kappa B/metabolismo , Proteínas NLR , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Shigella flexneri/genética
13.
Immunopharmacol Immunotoxicol ; 44(1): 99-109, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34881658

RESUMO

Background: The intracellular NOD-like receptor (NLR) family of pathogen recognition receptors (PRRa) is involved in initiating the innate immune response of which NOD1 and NOD2 are the best-characterized members. Aberrant expression of NOD1 and NOD2 has been uncovered in a number of chronic inflammatory diseases, such as inflammatory bowel disease and rheumatoid arthritis. However, the mechanism underlying NOD1/NOD2 gene expression regulation is still in its infancy. Epigenetic modifications such as DNA methylation and histone acetylation regulate the expression of genes and alterations in their patterns have been linked to many inflammatory diseases. This study investigated whether epigenetic modifying drugs affect the regulation of NOD1/NOD2 activity and expression. DNA methyltransferase inhibitors have recently been used in the treatment of myelodysplastic syndrome and as combination therapy in cancer but the full extent of their effects has not been quantified.Methods: Pharmacological inhibition of epigenetic enzymes in a human monocytic THP-1 cell line was carried out and NOD1/NOD2 expression and pro-inflammatory responses were quantified.Results: Cells primed with a DNA methyltransferase inhibitor (but not a histone deacetylase [HDAC] inhibitor) were found to be consistently more responsive to NOD1/NOD2 stimulation and had increased basal expression.Conclusion: The novel experimentation carried out here suggests for the first time that NOD1/NOD2 receptor activity and expression in monocytes are possibly regulated directly by DNA methylation.


Assuntos
Proteína Adaptadora de Sinalização NOD1 , Proteína Adaptadora de Sinalização NOD2 , Linhagem Celular , DNA , Humanos , Metiltransferases/metabolismo , Monócitos/metabolismo , Proteínas NLR/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo
14.
Transpl Immunol ; 70: 101493, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34774740

RESUMO

BACKGROUND: Cardiac insufficiency is a common complication of sepsis and septic shock and is the most common cause of death in critically ill patients. Recent studies have found that microRNAs (miRNAs) play a potential role in sepsis as markers, but little is known about their functional effects on sepsis-induced cardiomyopathy (SIC). OBJECTIVE: This study is designed to explore the possible role and underlying mechanisms of miR-702-3p in septic cardiomyopathy. METHODS: As expected, H9c2 cells were induced with lipopolysaccharide (LPS) to construct the model of septic cardiomyopathy. The expression of miR-702-3p was detected by qRT-PCR assay and those of IL-1ß, IL-6 and TNF-α by ELISA assay. The viability, proliferation and apoptosis of LPS-treated H9c2 cells were determined by CCK-8, EdU, flow cytometry and western blot assays. Moreover, Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) was predicted and confirmed as a direct target of miR-702-3p by TargetScan, miRwalk and miRDB prediction and dual-luciferase reporter gene assays. RESULTS: While LPS can weaken the viability of H9c2 cells, miR-702-3p enhances that of LPS-treated H9c2 cells by inhibit the expressions of TNF-α, IL-6, IL-1ß. We found NOD1 is a target gene of miR-702-3p, and over-expression of NOD1 restores the inhibitory effects of miR-702-3p on the LPS-treated H9c2 cells. CONCLUSION: MiR-702-3p played an important role in the pathogenesis of sepsis cardiomyopathy via targeting NOD1, suggesting that miR-702-3p may be a potential new target for the treatment of SIC.


Assuntos
MicroRNAs , Sepse , Animais , Apoptose , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Ratos , Sepse/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
Infect Immun ; 90(1): e0048121, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34748367

RESUMO

Endoplasmic reticulum (ER) stress is intimately linked with inflammation in response to pathogenic infections. ER stress occurs when cells experience a buildup of misfolded or unfolded protein during times of perturbation, such as infections, which facilitates the unfolded protein response (UPR). The UPR involves multiple host pathways in an attempt to reestablish homeostasis, which oftentimes leads to inflammation and cell death if unresolved. The UPR is activated to help resolve some bacterial infections, and the IRE1α pathway is especially critical in mediating inflammation. To understand the role of the IRE1α pathway of the UPR during enteric bacterial infection, we employed Citrobacter rodentium to study host-pathogen interactions in intestinal epithelial cells and the murine gastrointestinal (GI) tract. C. rodentium is an enteric mouse pathogen that is similar to the human pathogens enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively), for which we have limited small-animal models. Here, we demonstrate that both C. rodentium and EPEC induced the UPR in intestinal epithelial cells. UPR induction during C. rodentium infection correlated with the onset of inflammation in bone marrow-derived macrophages (BMDMs). Our previous work implicated IRE1α and NOD1/2 in ER stress-induced inflammation, which we observed were also required for proinflammatory gene induction during C. rodentium infection. C. rodentium induced IRE1α-dependent inflammation in mice, and inhibiting IRE1α led to a dysregulated inflammatory response and delayed clearance of C. rodentium. This study demonstrates that ER stress aids inflammation and clearance of C. rodentium through a mechanism involving the IRE1α-NOD1/2 axis.


Assuntos
Carga Bacteriana , Citrobacter rodentium/fisiologia , Endorribonucleases/metabolismo , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Interações Hospedeiro-Patógeno , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Biomarcadores , Estresse do Retículo Endoplasmático , Endorribonucleases/genética , Infecções por Enterobacteriaceae/imunologia , Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Camundongos , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
16.
Front Immunol ; 12: 766740, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745142

RESUMO

Duck viral hepatitis (DVH) is an acute, highly lethal infectious disease of ducklings that causes huge losses in the duck industry. Duck hepatitis A virus genotype 3 (DHAV-3) has been one of the most prevalent DVH pathogen in the Asian duck industry in recent years. Here, we investigated the genetic basis of the resistance and susceptibility of ducks to DVH by comparing the genomes and transcriptomes of a resistant Pekin duck flock (Z8) and a susceptible Pekin duck flock (SZ7). Our comparative genomic and transcriptomic analyses suggested that NOD1 showed a strong signal of association with DVH susceptibility in ducks. Then, we found that NOD1 showed a significant expression difference between the livers of susceptible and resistant individuals after infection with DHAV-3, with higher expression in the SZ7 flock. Furthermore, suppression and overexpression experiments showed that the number of DHAV-3 genomic copies in primary duck hepatocytes was influenced by the expression level of NOD1. In addition, in situ RNAscope analysis showed that the localization of NOD1 and DHAV-3 in liver cells was consistent. Altogether, our data suggested that NOD1 was likely associated with DHAV-3 susceptibility in ducks, which provides a target for future investigations of the pathogenesis of DVH.


Assuntos
Proteínas Aviárias/genética , Patos/genética , Vírus da Hepatite do Pato/genética , Hepatite Viral Animal/genética , Proteína Adaptadora de Sinalização NOD1/genética , Infecções por Picornaviridae/genética , Doenças das Aves Domésticas/genética , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Proteínas Aviárias/metabolismo , Células Cultivadas , Patos/sangue , Patos/virologia , Feminino , Genótipo , Vírus da Hepatite do Pato/fisiologia , Hepatite Viral Animal/virologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Hibridização In Situ/métodos , Masculino , Proteína Adaptadora de Sinalização NOD1/metabolismo , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/virologia , Doenças das Aves Domésticas/virologia , RNA-Seq/métodos , Análise de Sobrevida , Transcriptoma/genética
17.
Ophthalmic Genet ; 42(6): 691-697, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34294014

RESUMO

Purpose: Behçet's disease (BD) is an autoinflammatory disease with clinical manifestations such as mucocutaneous, ocular, vascular, gastrointestinal, musculoskeletal and central nervous system involvement. Features of innate and adaptive immunity and inflammasome pathways have been claimed in the pathogenesis of BD. We aimed to investigate the roles of NOD1, NOD2, PYDC1 and PYDC2 genes in the genetic predisposition of BD.Materials and Methods: Genetic variations of NOD1 (rs2075820 and rs2075818) and NOD2 (R334Q and R334W) genes were explored in 68 BD patients and 70 controls with PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) approach. PYDC1 and PYDC2 gene variants were investigated by Sanger sequencing.Results: The polymorphism of rs2075820 (NOD1 G/A) had a statistically significant difference between the BD and controls, AA genotype was 2.460-fold protective. When compared in terms of cardiovascular involvement in BD patients, AA genotype was increased the risk of cardiovascular involvement 4.286-fold. There was a significant difference between BD and controls in rs2075818 (NOD1 G/C) polymorphism and CC genotype increased the risk of BD by 3.780-fold. In terms of rs2075818 variants, there was a statistically significant difference between BD patients with ocular lesions, joints, cardiovascular and gastrointestinal involvement and controls. There was a significant difference between the patients with joint involvement and controls and the risk increased of 3.310-fold.Conclusion: The data shed new light on the association between polymorphisms of NOD1 gene and BD and clinicial manifestations. However, NOD2, PYDC1 and PYDC2 genes were not associated with BD in the Turkish population.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Síndrome de Behçet/genética , Predisposição Genética para Doença , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único/genética , Ribonucleoproteínas/genética , Adulto , Síndrome de Behçet/diagnóstico , Síndrome de Behçet/epidemiologia , Estudos de Casos e Controles , Feminino , Frequência do Gene , Humanos , Mutação INDEL/genética , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Turquia/epidemiologia
18.
Inflammation ; 44(6): 2260-2269, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34165676

RESUMO

The anti-inflammatory adipokine CTRP-3 might affect innate immune reactions such as NOD1. The impact of CTRP-3 on NOD1-mediated inflammation in adipocytes and monocytic cells as well as on NOD1 expression was investigated. Murine 3T3-L1 pre-adipocytes and adipocytes as well as human THP-1 monocyte-like cells were co-stimulated with the synthetic NOD1 agonist Tri-DAP and recombinant CTRP-3. Gonadal adipose tissue and primary adipocytes were obtained from a murine model carrying a knockout (KO) of CTRP-3 in adipocytes but not in stroma-vascular cells. Wildtype mice with lipopolysaccharide (LPS)-induced elevated NOD1 expression were treated with CTRP-3. Secreted inflammatory cytokines in cell supernatants were measured by ELISA and mRNA levels were quantified by RT-PCR. Pro-inflammatory chemokine and cytokine secretion (MCP-1, RANTES, TNFα) was induced by NOD1 activation in adipocytes and monocyte-like cells, and MCP-1 and RANTES release was effectively inhibited by pre-incubation of cells with CTRP-3. CTRP-3 also antagonized LPS-triggered induction of NOD1 gene expression in murine adipose tissue, whereas adipocyte CTRP-3 deficiency upregulated NOD1 expression in adipose tissue. CTRP-3 is an effective antagonist of peptidoglycan-induced, NOD1-mediated inflammation and of LPS-induced NOD1 expression. Since basal NOD1 expression is increased by adipocyte CTRP-3 deficiency, there have to be also inflammation-independent mechanisms of NOD1 expression regulation by CTRP-3.


Assuntos
Adipócitos/metabolismo , Adipocinas/metabolismo , Gordura Intra-Abdominal/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Células 3T3-L1 , Adipócitos/imunologia , Adipocinas/genética , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Gordura Intra-Abdominal/imunologia , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD1/genética , Transdução de Sinais , Gordura Subcutânea/imunologia , Gordura Subcutânea/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/induzido quimicamente , Síndrome de Resposta Inflamatória Sistêmica/genética , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Células THP-1
19.
EMBO J ; 40(13): e108812, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34132411

RESUMO

The cytosolic NOD1 and NOD2 pattern recognition receptors are typically known as sensors of bacterial peptidoglycan fragments. A new study in this issue links NOD1/2 activation with ER homeostasis through the bioactive metabolite sphingosine-1-phosphate (S1P).


Assuntos
Proteína Adaptadora de Sinalização NOD1 , Proteína Adaptadora de Sinalização NOD2 , Lisofosfolipídeos , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados
20.
Biol Res ; 54(1): 13, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879265

RESUMO

BACKGROUND: Helicobacter pylori is detected by pathogen recognition receptors including toll-like receptors (TLR) and nucleotide-binding oligomerization domain (NOD)-like receptors, eliciting an innate immune response against this bacteria. The aim of this study was to assess if polymorphisms of TLR2, TLR4, TLR5, NOD1 and NOD2 genes are associated with gastric cancer, in particular in individuals infected with H. pylori. RESULTS: A case-control study of 297 gastric cancer patients and 300 controls was performed to assess the association of 17 polymorphisms. Analyses performed under the allele model did not find association with gastric cancer. However, NOD1 rs2075820 (p.E266K) showed association with intestinal-type gastric cancer among H. pylori infected subjects (OR = 2.69, 95% CI 1.41-5.13, p = 0.0026). The association was not statistically significant in diffuse-type gastric cancer cases (OR = 1.26, 95% CI 0.63-2.52, p = 0.51). When the analyses were performed in patients carrying H. pylori strains harboring the cag pathogenicity island (cagPAI), we noticed significant association with NOD1 rs2075820 (OR = 4.90, 95% CI 1.80-3.36, p = 0.0019), in particular for intestinal-type gastric cancer cases (OR = 7.16, 95% CI 2.40-21.33, p = 4.1 × 10- 4) but not among diffuse-type gastric cancer cases (OR = 3.39, 95% CI 1.13-0.10, p = 0.03). CONCLUSIONS: NOD1 rs2075820 increases the risk of intestinal-type gastric cancer among individuals infected with H. pylori, particularly in those harboring the cagPAI.


Assuntos
Infecções por Helicobacter , Proteína Adaptadora de Sinalização NOD1/genética , Neoplasias Gástricas , Estudos de Casos e Controles , Ilhas Genômicas , Infecções por Helicobacter/genética , Helicobacter pylori , Humanos , Neoplasias Gástricas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...